B.Sc. I Semester Degree Examination, Nov./Dec. 2012 MATHEMATICS Paper – 1.1. : Algebra – I

Time: 3 Hours Max. Marks: 60

Instructions: 1) Answer all the Sections.

2) Mention the question numbers correctly.

SECTION-A

Answer any ten of the following:

(10×2=20)

1. Define quantifiers and types of quantifiers.

2. Negate:

"All odd numbers are not prime numbers and some prime numbers are even".

- 3. Find the truth set of P(x): |x-1| < 3 when the replacement set is the set of natural numbers N.
- 4. Prove that composition of functions is associative.
- 5. Define countable set.
- 6. Show that $E = \{2, 4, 6,\}$ is countable.
- 7. Define equivalent matrix.
- 8. Define eigen value and eigen vector of a square matrix.
- 9. Find eigen values of matrix $A = \begin{bmatrix} -3 & 8 \\ -2 & 7 \end{bmatrix}$
- 10. Find the characteristic equation of $A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$.
- 11. Define consistent and inconsistent system of linear equations.
- 12. State Cayley-Hamilton theorem.

SECTION - B

Answer any three of the following:

 $(3 \times 5 = 15)$

1. Prove that:

$$T[p(x) \land q(x)] = T[p(x)] \cap T[q(x)]$$

- 2. If $P \rightarrow (q \land r)$, $\wp S \rightarrow (\wp q \lor \wp r)$ and P, prove S, by reduction and absurdum.
- 3. Prove that the following propositions are false by giving counter examples.

i)
$$x^2 - 6x + 8 = 0$$

 $\forall x \in R$ such that $2 \le x \le 4$

- ii) $AB = 0 \Rightarrow A = 0$ or B = 0, where A and B are 2×2 matrices.
- 4. $T[wP(x)] = \{T[P(x)]\}'$.

SECTION-C

Answer any one of the following: (1x5=5)

- 1. Prove that every subset of a countable set is countable.
- 2. If $f: A \to B$ and $g: B \to C$ be two bijective functions then $(g \circ f)^{-1}$ exists and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

SECTION - D A Salam to seuley deple brild . 9

Answer any four of the following:

 $(4 \times 5 = 20)$

1. Find the rank of the matrix A using the elementary row operations where A is given by

A =
$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$
A =
$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$
A =
$$\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$

2. Find the inverse of the matrix A by elementary transformations where

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

3. Find the eigen values and eigen vectors of the matrix.

4. Solve completely the system of equations :

$$x_{1} + 3x_{2} + 2x_{3} = 0$$

$$2x_{1} - x_{2} + 3x_{3} = 0$$

$$3x_{1} - 5x_{2} + 4x_{3} = 0$$

$$x_{1} + 17x_{2} + 4x_{3} = 0$$

5. Verify Cayley-Hamilton theorem.

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

and hence find A⁻¹.

B.Sc. I Semester Degree Examination, Nov./Dec. 2012 MATHEMATICS

Paper - 1. 2 - Calculus - I

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Solve all the questions.

2) Write the question numbers correctly.

PART-A

I. Answer any ten questions:

(10×2=20)

1) If
$$f(x) = \begin{cases} x-2, & \text{for } x < 0 \\ x^3 - 3, & \text{for } x > 0 \end{cases}$$

Find $\lim_{x\to 0} f(x)$, if it exists.

- 2) Define continuity of the function f(x) at x = a and also define the continuity of the function in the interval [a, b].
- 3) Find the n^{th} order derivative of y = log (ax + b).
- 4) Write the formula for the nth order derivatives of $y = e^{ax} \cos(bx + c)$ and $y = e^{ax} \sin(bx + c)$.
- 5) Show that the curves $r = a\theta$ and $r = \frac{a}{\theta}$ intersect each other orthogonally.
- 6) Write the formula for the centre of curvature in Cartesian and parametric form with usual notations.
- 7) Define cusp, node and isolated point of a curve.
- 8) Find the polar subtangent and polar subnormal for $r = a \cos 2\theta$, at $\theta = \pi/6$.
- 9) Find the Pedal equation of the curve $r = ae^{\theta \cot \alpha}$.
- 10) With usual notations show that $\frac{ds}{dr} = \frac{r}{\sqrt{r^2 p^2}}$.
- 11) Find the envolope of the family of circles $(x-\alpha)^2+y^2=4\alpha$.
- 12) Find the asymptotes parallel to the co-ordinate axes for the curve $xy^3 x^3 = a(x^2 + y^2)$.

PART-B

II. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) If f(x) is a continuous function defined on [a, b] then it attains its bounds.
- 2) Find the nth order derivative of sin²xcos³x.
- 3) If x = sint, y = cos pt show that $(1 x^2) y_{n+2} (2n + 1) x y_{n+1} (n^2 p^2) y_n = 0$.
- 4) Show that the curves $r^2 = a^2\cos 2\theta$ and $r = a(1 + \cos\theta)$ intersect at an angle $3\sin^{-1}(3/4)^{\frac{1}{4}}$.
- 5) Show that the Pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{a^2b^2}{p^2} + r^2 = a^2 + b^2$.
- 6) Derive the formula for radius of curvature in polar form.

PART-C

III. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) Find the radius of curvature of the cardioide $r = a (1 + \cos \theta)$. Also show that ρ^2/r is a constant.
- 2) Find the co-ordinates of centre of curvature of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
- 3) Find the envolope of the family of circles whose centre lies on the parabola $y^2 = 4ax$ and passing through the vertex.
- 4) Show that the curve $r = \frac{a\theta^2}{\theta^2 1}$ has a point of inflexion at $r = \frac{3a}{2}$.
- 5) Find all the asymptotes of the curve $y^3 + x^2y + 2xy^2 y + 1 = 0$.
- 6) Trace the curve $r = a \sin 3\theta$. (The three leaved rose).