I Semester B.Sc. Degree Examination, Nov./Dec. 2013 MATHEMATICS Paper – 1.1 : Algebra – I

Time: 3 Hours Max. Marks: 60

Instruction: Answer all questions.

SECTION - A

Answer any ten of the following:

(10×2=20)

- 1. Define Replacement set and truth set of an open sentence.
- 2. Define quantifiers and types of quantifiers.
- 3. Find the truth set of p(x): |x-1| < 3 if R[p(x)] = N the set of natural numbers.
- 4. Negate "If all integers are even then some people like logic".
- 5. Prove that the composition of mappings is associative.
- 6. Define countable and denumerable sets.
- 7. Define characteristic equation and characteristics roots of a square matrix.
- 8. Find the Eigen values of $A = \begin{bmatrix} -3 & 8 \\ -2 & 7 \end{bmatrix}$.
- 9. Prove that if λ is an Eigen value of A then λ^2 is an Eigen value of A^2 .
- 10. Find the rank of the following matrix :

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7 \end{bmatrix}$$

- 11. Define consistent and inconsistent system of equations.
- 12. State Cayley-Hamilton theorem with explanation.

SECTION - B

Answer any three of the following:

 $(3 \times 5 = 15)$

- 1. State the rules of inferences with illustration.
- 2. "If $p \rightarrow q$ is true and $\sim q$ is true" then prove that p is false by direct method.
- Symbolise the following and negate: "Some students are lazy or all students are hard working".
- 4. If p(x) and q(x) be the open sentences with same replacement set then prove that $T[p(x) \land q(x)] = T[p(x)] \cap T[q(x)]$.
- 5. Prove that $T[-p(x)] = \{T(p(x))\}'$.

SECTION - C

Answer any one of the following:

 $(1 \times 5 = 5)$

- 1. If $f: X \to Y$ be a mapping and if C and D are any two subsets of Y, then prove the following:
 - i) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
 - ii) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 2. Show that the sets $N \times N$ and $Z \times Z$ are equivalent.
- 3. Prove that the set $N \times N$ is denumerable.

SECTION - D

Answer any four of the following:

(4×5-20)

1. Find the rank of the following matrix:

$$A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 4 \\ -1 & -2 & 3 & 4 \\ -1 & -2 & 6 & -7 \end{bmatrix}$$

2. Find the rank of the following matrix A by reducing it to normal form where

$$A = \begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \end{bmatrix}$$

3. Find the inverse of the matrix A by elementary transformations where

$$A = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}.$$

4. Solve completely the following system of equations:

$$x + 3y - 2z = 0$$

$$2x - y + 4z = 0$$

$$x - 11y + 14z = 0$$
.

5. Find the Eigen values and Eigen vectors of the matrix

$$A = \begin{bmatrix} 4 & -1 \\ 1 & +2 \end{bmatrix}.$$

6. Verify Cayley-Hamilton theorem for the matrix A and hence find A^{-1} where

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

B.Sc. I Semester Degree Examination Nov./Dec. 2013 MATHEMATICS

zerlainev (x)) nerif angle Paper: 1.2 - Calculus - I

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Answer all the Sections.

2) Write the question numbers correctly.

SECTION-A

Answer any ten of the following:

 $(10 \times 2 = 20)$

1. If
$$f(x) = \begin{cases} x^2 + 3, & \text{if } x \le 1 \\ x + 1, & \text{if } x > 1 \end{cases}$$
, find $\lim_{x \to 1} f(x)$, if it exists.

- 2. Define removable discontinuity and ordinary discontinuity.
- 3. Find the nth derivative of $y = e^{ax} \sin(bx + c)$.
- 4. Find the ratio of polar sub-tangent and polar sub-normal for the curve $r = ae^{b\theta^2}$.

5. Show that for the curve
$$r = a_{\theta}$$
 is $p = \frac{r^2}{\sqrt{r^2 + a^2}}$.

• 6. Find
$$\frac{ds}{dx}$$
 and $\frac{ds}{dy}$ for the curve $x^{2/3} + y^{2/3} = a^{2/3}$.

- 7. Show that the curve $y = e^{-x}$ concave upwards every where.
- 8. Find the radius of curvature of the curve $y = 4 \sin x \sin 2x$ at $x = \frac{\pi}{2}$.
- 9. Write the formula for the co-ordinates of the centre of curvature and the equation of circle of curvature.
- 10. Find the envelope of family of the circle $(x \alpha)^2 + y^2 = 4\alpha$, where α is a parameter.
- 11. Find the singular point on the curve $x^3 + x^2 + y^2 x 4x + 3 = 0$.
- 12. Find the asymptotes parallel to the co-ordinate axes for the curve $\frac{a^2}{x^2} + \frac{b^2}{y^2} = 1$

SECTION-B

Answer any four of the following:

(4×5=20)

- 1. If f(x) is continuous in [a, b], f(a) and f(b) have opposite signs then f(x) vanishes for atleast one value of x in [a, b].
- 2. Find the n^{th} derivative of $y = \sin^2 x \cos^3 x$.
- 3. If $y = (\sin^{-1}x)^2$ show that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} n^2y_n = 0$.
- 4. Define pedal equation of a curve and with usual notations prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2.$
- 5. Find the angle of intersection of two curves $r = a \log_{\theta} and r = \frac{a}{\log \theta}$.
- 6. Find the envelope of the family of the circle $x^2 + y^2 2ax \cos \alpha 2y \sin \alpha = c^2$ where α is a parameter.

SECTION - C

Answer any four of the following:

 $(4 \times 5 = 20)$

- 1. Show that the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1) is $\sqrt{2}/3$.
- 2. Find the point of inflexion on the curve $x = log(\frac{y}{x})$.
- 3. Find the circle of curvature for the curve $xy = c^2$ at (a, c).
- 4. Find the evolute of the curve $x^2 y^2 = a^2$.
- 5. Find all the asymptotes of the curve $x^2y^2 = a^2(x^2 + y^2)$.
- 6. Trace the curve cissoid y^2 $(a x) = x^3$, a > 0.