B.Sc. IV Semester Degree Examination, May 2013 Paper - 4.1: MATHEMATICS Abstract Algebra and Linear Algebra

Time: 3 Hours Max. Marks: 60

Instruction: Answer all the Sections.

SECTION-A

I. Answer any ten of the following: (10×2=20)

- 1) Define cyclic group and normal subgroup.
- 2) Define quotient or factor group.
- 3) Define homomorphism and isomorphism.
- 4) Define permutation group.
- 5) Find the number of generators of the cyclic group of order 60.
- 6) Define integral domain.
- 7) Define skew field and field.
- 8) Define vector space over the field of real numbers.
- 9) Show that the vectors $\{(1,1-1)(2,-3,5),(-2,1,4)\}$ are linearly independent.
- 10) Define Basis and Dimension.
- 11) Define linear transformation.
- 12) State Rank-Nullity theorem.

SECTION - B

II. Answer any three of the following: (3x5=15)

- 1) Define right and left cosets of H in G. Hence state and prove Lagranges
- 2) Prove that the intersection of two normal subgroups is again a normal subgroup.
- 3) State and prove fundamental theorem of homomorphism.
- 4) Prove that the set G/H of all cosets of a normal subgroup H of a group G is a group under the binary operation defined by $H_a \cdot H_b = H_{ab}, \ \forall \ H_a, H_b \in \frac{G}{L}$.
- 5) P.T. the centre Z of a group G, is a normal subgroup of G.

SECTION-C

III. Answer any two of the following:

 $(2 \times 5 = 10)$

- 1) Define a ring and show that the subset S of a ring (R, t, ·) is a subring of R if and only if :
 - i) \forall a, b \in S \Rightarrow a + (-b) \in S
 - ii) $\forall a, b \in S \Rightarrow a \cdot b \in S$.
- 2) Show that a ring is without zero divisors if and only if the cancellation laws hold in it.
 - 3) Prove that every finite integral domain is a field.
 - 4) Show that an integral domain with six elements does not exist.

SECTION - D

IV. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) Prove that the necessary and sufficient conditions for a non-empty subset W of a vector space V(F) to be a subspace of V are \forall a, b \in F, and α , $\beta \in W \Rightarrow a \alpha + b \beta \in W$.
- 2) Prove that any two bases of a finite dimensional vector space V have the same finite number of elements.
- 3) Determine the linear transformation for a matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$ for

 $T: V_3(R) \rightarrow V_2(R)$ relative to the standard basis of $V_3(R)$ and $V_2(R)$.

- 4) Find the matrix of linear transformation T: $R^2 \to R^3$ defined by T (x, y) = (2y x, y, 3y 3x) relative to the bases $B_1 = \{(1,1) (-1,1)\}$ and $B_2 = \{(1,1,1), (1,-1,1), (0,0,1)\}$.
 - 5) State and prove Rank-Nullity theorem.

B.Sc. IV Semester Degree Examination, May 2013 MATHEMATICS

Paper - 4.2: Differential Equations - I

Time: 3 Hours

Max. Marks: 60

Instructions: i) Answer all the questions.

ii) Mention the question number correctly.

SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) Define general solution and particular solution of a differential equation.
- 2) Solve the equation $(e^y+1) \cos x dx + e^y \sin x dy = 0$.
- 3) Find the general solution of the linear differential equation

$$\sin x \frac{dy}{dx} + y\cos x = 2 \sin^2 x.\cos x.$$

- 4) Solve $p^2 5p + 6 = 0$.
- 5) Find the complementary function of $(D^4 5D^2 + 4)$ $y = e^{3x}$.

6) Solve
$$\frac{d^2y}{dx^2} - 4y = x^2$$
.

- 7) Obtain the general solution of $(D^4 + 1)$ y = cosx.
- 8) Reduce the equation $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} 4y = x^4$ to linear deferential equation with constant coefficients and hence find its complementary function.

9) Solve
$$\frac{dx}{dt} + wy = 0$$
, $\frac{dx}{dt} - wx = 0$

10) Find a part of complementary function of the mollulos is senso and length to

$$\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - (1 - \cot x)y = e^x \cdot \sin x.$$

- 11) Find the Wranskian W for the equation $(D^2 1) y = \frac{2}{1 + e^x}$.
- 12) Show that the equation $x^2(1+x) \frac{d^2y}{dx^2} + 2x(2+3x) \frac{dy}{dx} + 2(1+3x)y = 0$ is exact.

SECTION-B

II. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) Explain the method of solving the linear differential equation dy/dx + Py = Q, where P and Q are functions of x alone.
- 2) Show that $(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} 3y^2)dy = 0$ is exact and hence solve it.
- 3) Solve $y^2 \log y = xyp + p^2$.
- 4) Find the general solution and singular solution of $y = px + sin^{-1}p$.
- 5) Solve the Bernoulli's equation

$$\sec^2 y \frac{dy}{dx} + x \tan y = x^3 \cdot da - da$$
) to notional vastnemeigness ent bail. (3)

SECTION - C

III. Answer any three of the following: (3x5=15)

- 1) Solve the equation $(D^2 + 4D + 4)y = e^{-2x}$.
- 2) Obtain the general solution of $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = \sin 3x$
- 3) Solve: $(D^3 + 3D^2 + 2D)y = x^2$
- 4) Find the general solution of $\frac{d^2y}{dx^2} + 4y = x \sin x$.
- 5) Solve $x^{d^2y}/dx^2 2^y/x = x + \frac{1}{x^2}$.

SECTION - D

IV. Answer any two of the following:

 $(2 \times 5 = 10)$

- 1) Solve $\frac{d^2y}{dx^2} + \frac{2}{x}\frac{dy}{dx} + \frac{a^2}{x^4}y = 0$ by the method of changing the independent variable.
- 2) Solve $x^2 \frac{d^2y}{dx^2} 2(x^2 + x) \frac{dy}{dx} + (x^2 + 2x + 2) = 0$ by reducing it to normal form.
- 3) Solve $y_2 + y = \sec x$ by the method of variation of parameters.
- 4) Solve $x^2 \frac{d^2y}{dx^2} 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$ by finding a part of complementary function.