## B.Sc. III Semester Degree Examination, November/December 2013 PHYSICS

## Paper - 3.1 : Optical Instruments, Laser and Electrodynamics

Time: 3 Hours

Max. Marks: 80

Instructions: i) Section I is compulsory.

ii) Answer any four questions from Section II and any four from Section III.

### SECTION-I

1. Answer any twelve of the following:

(12×1=12)

A) Choose the correct answer:

- i) To reduce spherical aberration using a plano convex lens,
  - a) the plane surface should face the incident light
  - b) the curved surface should face the incident light
  - c) either a) or b)
  - d) none of the above
- ii) Coherent sources are those, which have
  - a) same amplitude
- b) same phase
- c) same frequency
- d) all of the above
- iii) Gradient of a scalar field is a
  - a) Scalar
  - b) Vector
  - c) Either a) or b) depending on the physical quantity
  - d) None of the above
- iv) According to equation of continuity,

a) 
$$\nabla \cdot \vec{J} + \frac{\partial D}{\partial t} = \vec{\nabla} \times \vec{H}$$
 b)  $\nabla \cdot J = \frac{-\partial \vec{B}}{\partial t}$ 

b) 
$$\nabla \cdot J = \frac{-\partial \vec{B}}{\partial t}$$

c) 
$$\vec{\nabla} \cdot \vec{J} + \frac{d\rho}{dt} = 0$$

c)  $\vec{\nabla} \cdot \vec{J} + \frac{d\rho}{dt} = 0$  d) None of the above

| 101    | Fill  | *    | A  | Tan I |    | District of |
|--------|-------|------|----|-------|----|-------------|
| Jack 1 | - 111 | In 1 | no | n     | 20 | VC          |
|        | 1 111 | 1111 |    | 1.7   |    | 22          |

- i) Huygens eye-piece is used for \_\_\_\_\_ purposes.
- ii) Curl of a position vector  $\vec{r}$  is \_\_\_\_\_
- iii) Laplace equation in electrostatics is expressed as \_\_\_\_\_
- iv) Torque on a dipole is given by the formula \_\_\_\_\_

## C) True or false:

- i) The nodal points coincide with the focal points when the system is in air.
- ii) According to Biot-Savart's law, flux density dB at a point is directly proportional to the square of the distance between the point and the element.
- iii) Poynting vector  $\vec{S}$  is defined as  $\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$ .

### D) Answer in one or two sentences:

- i) What is Rayleigh criterion?
- ii) Mention one characteristic of laser.
- iii) Give one example for vector field.
- iv) State ampere's circuital law.

# SECTION-II

 $(4 \times 4 = 16)$ 

- 2. Obtain the expression for achromatism of two lenses separated by a distance 'd' by the method of calculus.
- 3. Write a note on semiconductor laser.
- 4. State and prove Gauss divergence theorem.
- 5. State and explain Coulomb's law in electrostatics and define Coulomb.
- 6. Write down Maxwell's equations.
- 7. Explain Hertz experiment to produce and detect electromagnetic waves.



#### SECTION-III

- 8. a) Derive the formula for equivalent focal length of two thin lenses placed co-axially in air and separated by a distance. Also derive the expression for  $\alpha$  and  $\beta$ , which gives the position of principal points.
  - b) Two thin convex lenses of focal lengths 20 cm and 5 cm are placed 10 cm apart. Calculate the positions of the principal points. (9+4=13)
- a) Explain the recording and reconstruction process of a hologram based on the principle of division of wave front. Mention the conditions required for the same.
  - b) Mention the applications of Lasers.

(9+4=13)

10. a) Prove the vector identity,

curl  $(f \times g) = (\text{div } g) f - (\text{div } f) g + (g \cdot \nabla) f - (f \cdot \nabla) g$ .

(9+4=13)

- b) Define cross product of two vectors. Give an example.
- 11. a) Derive an expression for field at a point outside an infinitely charged cylinder.
  - b) Calculate the electric potential at a point 9 m away from a charge of  $1\mu F \cdot \epsilon_0 = 8.854 \times 10^{-12} F/m$ . (9+4=13)
- a) Define magnetic flux. Obtain an expression for the magnetic field at a point due to a long straight conductor carrying current.
  - b) A closely wound solenoid of 1000 turns has an axial length of 0.8 m and a radius of 1.5 cm. Find the flux density at the middle of the solenoid, when a current of 1.2 A flows through it. (9+4=13)
- 13. a) Derive an expression for equation of electromagnetic wave in isotropic non-conducting medium.
  - b) A plane electromagnetic wave travelling along X-direction in an unbounded loss less dielectric medium of  $\mu_r=2$  and  $\epsilon_r=5$  has a peak electric field strength of  $10 \text{Vm}^{-1}$ . Calculate the velocity of the wave.

Given:  $\varepsilon_0 = 8.854 \times 10^{-12} \text{F/m}$ . (9+4=13)