11621

B.Sc. VI Semester Degree Examination, May/June 2016 PHYSICS

Paper – 6.1 : Statistical Physics and Solid State Physics

Time: 3 Hours

Max. Marks: 80

 $(12 \times 1 = 12)$

d) all these

Instructions : 1) Section – I is compulsory.

2) Answer **any four** questions **each** from Section – **II** and from Section – **III**.

c) neutron

SECTION-I

1. Answer any twelve of the following.

A) Choose the correct answer :

i) Example for fermian

- a) electron b) proton
- ii) Astronomical distances are measured in
 - a) Light year b) Par-sec
 - c) Astronomical unit d) All these
- iii) For a crystal if $a = b \neq c$, then the crystal is
 - a) Tetragonal b) Hexagonal
 - c) Either (a) or (b) d) Neither (a) nor (b)
- iv) Susceptibility of diamagnetic substance is to
 - a) Absolute temperature
 - b) Square root of absolute temperature
 - c) Square of absolute temperature
 - d) None of these

B) Fill in the blanks :

- i) ______ statistics is applicable to gas molecules.
- ii) The number of atoms per unit cell in a simple cubic crystal is
- iii) Miller indices of a set of parallel planes having equal intercepts on X, Y and Z axes is _____
- iv) Critical temperature of super conductor

with impurity.

-2-

C) State true or false :..

- i) Fermions obey Pauli's exclusion principle.
- ii) Holes are not found in conduction band.
- iii) Super conductors exhibit Paramagnetism.
- D) Answer the following in one or two sentences :
 - i) What are Bosons?
 - ii) Define Fermi energy.
 - iii) Define mobility of charge carriers in solids.
 - iv) Define critical magnetic field in superconductor.

SECTION - II

$(4 \times 4 = 16)$

- 2. Explain canonical and micro canonical ensemble.
- 3. Write a note on H R diagram.
- 4. Describe KCl crystal with a neat diagram.
- 5. Explain briefly the classification of conductors, semiconductors and insulators based on band theory.
- 6. Explain Meissner's effect in superconductors.
- 7. Give the assumptions of classical free electron theory of metals.

SECTION - III

- 8. a) What are the assumptions made by Bose-Einstein statistics ? Derive equation for B-E distribution law.
 - b) How does F-D statistics differ from B-E statistics ?

(9+4)

- 10. a) Derive Bragg's relation $2d \sin \theta = n\lambda$.
 - b) Describe the construction and working of Bragg's spectrometer.
 - c) Ni has fcc structure with lattice constant 3.52 A. Calculate the interplanar spacing for (i) (101) planes, (ii) (123) planes and (iii) (320) planes. (4+5+4)
- 11. a) Derive an expression for electron concentration in an intrinsic semiconductors.
 - b) The Hall co-efficient of a specimen of a doped silicon is found to be 2.66 × 10⁻⁴ m³/coulomb. The resistivity of the specimen is 8.93 × 10⁻³ ohm-m. Find the mobility and density of the charge carrier, assuming single carrier conduction. (9+4)
- 12. a) Explain classical theory of paramagnetism.
 - b) Write any four properties of paramagnetic materials. (9+4)
- 13. a) Explain type I and type II superconductors.
 - b) Super conducting tin (Sn) has a critical temperature of 3.7 K at zero magnetic field and a critical field of 0.0306 tesla at 0 K. Find the critical field at 2.5 K. (9+4)

6/

11622

B.Sc. Sixth Semester Degree Examination, May/June 2016 PHYSICS

Paper – 6.2 : Network Theorems, Optoelectronics and Electronics

Max. Marks: 80

Instructions : 1) Section – I is compulsory. 2) Answer any four questions each from Section – II and from Section – III.

SECTION - I

1. Answer any twelve of the following :

 $(12 \times 1 = 12)$

A) Choose the correct answer :

c) 31

- i) Decimal equivalent of binary number 11111₂ is
 - a) 27 b) 29
 - d) 33

ii) The common emitter input characteristics are the plots of

- a) V_{CE} versus I_C at constant I_B
- b) V_{CB} versus I_C at constant I_F
- c) V_{CE} versus I_E at constant V_{BE}
- d) V_{BE} versus I_B at constant V_{CE}
- iii) Negative feedback is used in
 - a) Rectifier b) Oscillator
 - c) Amplifier d) Detector
- iv) The value of noise in AM when compared to FM is
 - a) Zero . b) Less
 - c) More d) None of the above
- B) Fill in the blanks :
 - i) The collector of transistor is ______ than the emitter.
 - ii) The _____ current of F.E.T. is practically zero.
 - iii) In FM, the _____ of the carrier is changed and not its _
 - iv) L.E.D. means

C) State true or false :

- i) F.E.T. is a three terminal device.
- ii) The frequency response curve is a graph of voltage gain versus input current.

-2-

- iii) In FM, modulation index cannot be greater than unity.
- D) Answer the following in one or two sentences :
 - i) Define angle of acceptance.
 - ii) What is a full adder?
 - iii) Define thermal runaway.
 - iv) What is biasing?

SECTION - II

$(4 \times 4 = 16)$

9

4

- 2. Mention the applications of optical fiber.
- 3. Explain the construction and working of AND gate using diodes.
- 4. How will you determine the input and output characteristics of a transistor in CE configuration ?
- 5. Derive an expression for voltage gain of an inverting amplifier.
- 6. Describe the construction of L.E.D.
- 7. Explain the modes of propagation of light through an optical fiber.

SECTION - III

- 8. a) State and prove superposition theorem.
 - b) Using Thevenin's theorem, determine the current flowing though R_L of the network shown in the following figure.

Research Constant	Elana Statistic Statistic Statistic Statistic	KIVIN KININ KIN	
		-3-	1622
9.	a)	What is a flip-flop ? Describe the construction and working of RS flip-flop.	9
	b)	How do you convert NAND gate into basic gates.	4
10.	a)	What is MOSFET ? How many types of MOSFETs are there ? Briefly outline the action of a MOSFET of any type.	9
	b)	In a transistor, the base current is 0.08 mA and the emitter current is 9.6 mA. Find (i) collector current, (ii) α and (iii) β .	4
11.	a)	Draw the h parameter model for a transistor in CE configuration. Derive the expressions for the voltage gain, current gain, input and output impedance.	9
	b)	An amplifier has a gain of 800. When the feedback is applied the gain is reduced to 150. Find the feedback ratio.	4
12.	a)	Draw a neat circuit diagram of Wien bridge oscillator and explain briefly its working. Give an expression for frequency in terms of the circuit elements.	9
	b)	A phase shift oscillator using transistor has parameter values R = $2.2 \text{ k}\Omega$, C = 0.1μ F. Calculate the frequency of oscillation.	4
13.	a)	Give the theory of frequency modulation. What are the advantages of frequency modulation over amplitude modulation ?	9
	b)	A sinusoidal carrier voltage of 80 volt amplitude and 1 MHz frequency is amplitude modulated by a sinusoidal voltage of frequency 5 kHz producing 50% modulation. Calculate the amplitude and frequency of lower and upper	
		SIGE DATIOS.	4