Addamana September Septemb

B.Sc. Second Semester Degree Examination, May/June 2016 PHYSICS

Paper 2.1 – Heat, Thermodynamics, Waves and Oscillations

Time: 3 Hours

Max. Marks: 80

11221

Instructions: 1) Section – I is compulsory.

2) Answer **any four** questions **each** from Section – **II** and from Section – **III**.

SECTION-I

1.	Answer any twelve of the following. (12×1=12)			
	A) Choose the correct answer			
	i) At what temperature is the r.m.s. speed of molecules of hydrogen is twice that at S.T.P. ?			
	a) 273 K b) 546 K c) 819 K d) 1092 K			
	ii) The conversion of water into ice is a			
	a) isothermal process b) isochoric process			
	c) isobaric process d) adiabatic process			
	iii) If the temperature of the source increases, the efficiency of a Carnot engine			
	a) increases b) decreases			
	c) remains unchanged d) none of these			
	iv) For a perfect gas, the Joule-Thomson co-efficient is			
	a) positive b) negative c) zero d) none of these			
	B) Fill in the blanks :			
	i) Entropy remains constant in			
	ii) The relation between inversion temperature and critical temperature is given by			
	iii) Temperature of sun is measured by			
	iv) In S.H.M. the velocity is maximum when displacement is			

11221

-2-

- C) State true or false :
 - i) Work done on a system is represent by negative sign.
 - ii) The speed of transverse wave produced in a string does not depend upon the applied tension.
 - iii) Microphone converts sound energy into electrical energy.
- D) Answer the following in one or two sentences :
 - i) State the first law of thermodynamics
 - ii) Define mean free path.
 - iii) What is a black body?
 - iv) What is meant by resonance?

SECTION-II

 $(4 \times 4 = 16)$

- 2. Write the postulates of kinetic theory of gases.
- 3. State the law of equipartition of energy. Prove that the energy associated with

each degree of freedom is $\frac{1}{2}$ kT.

- 4. Explain the results of Andrew's experiment on carbon dioxide.
- 5. Derive the relation $\frac{d^2y}{dt^2} = v^2 \frac{d^2y}{dx^2}$.
- 6. Give the construction and working of moving coil loudspeaker.
- 7. Mention the requisites of good acoustics.

- 8. a) Obtain an expression for the efficiency of a Carnot's heat engine in terms of temperatures of the source and sink.
 - b) Find the increase in entropy when 1.68 kg of ice at 273 K melts into water at the same temperature. Given latent heat of fusion of ice = 335×10³ J/kg.

4

9

анализияния асторикания составляется составля составля составля составля составля составля составля составля составля сос

. .

9.	a)	Deduce Claussius and Clapeyron equation. Explain the effect of pressure on boiling point and melting point.	9
	b)	Derive an expression for work done by a gas during isothermal changes.	4
10.	a)	Describe a method of liquefying oxygen.	9
	b)	Obtain the relation between temperature of inversion and critical temperature.	4
- anarchi -	a)	Derive Planck's law of radiation. How does it explain Wien's displacment law and Rayliegh-Jean's law ?	9
	b)	A black body at 500°C has a surface area of $0.5m^2$ and radiate heat at the rate of 1.02×10^4 joule per second. Calculate the Stefan's constant.	4
12.	a)	Deduce the frequency of longitudinal vibrations of a bar fixed at both ends.	9
	b)	A stone dropped from the top of a tower 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top? Velocity of sound = 340 ms^{-1} and g = 9.8 ms^{-2} .	4
13.	a)	What are beats ? How are they produced ? Derive an expression for the frequency of the beats.	9
	b)	A sound note of frequency 200 Hz is produced in hydrogen. Find its wavelength, assuming velocity of sound in air is 332 ms ⁻¹ and density of air is 14.4 times that of hydrogen.	4

-3-